3D Tracker-Level Fusion for Robust RGB-D Tracking

نویسندگان

  • Ning An
  • Xiaoguang Zhao
  • Zeng-Guang Hou
چکیده

In this study, we address the problem of online RGB-D tracking which confronted with various challenges caused by deformation, occlusion, background clutter, and abrupt motion. Various trackers have different strengths and weaknesses, and thus a single tracker can merely perform well in specific scenarios. We propose a 3D tracker-level fusion algorithm (TLF3D) which enhances the strengths of different trackers and suppresses their weaknesses to achieve robust tracking performance in various scenarios. The fusion result is generated from outputs of base trackers by optimizing an energy function considering both the 3D cube attraction and 3D trajectory smoothness. In addition, three complementary base RGB-D trackers with intrinsically different tracking components are proposed for the fusion algorithm. We perform extensive experiments on a large-scale RGB-D benchmark dataset. The evaluation results demonstrate the effectiveness of the proposed fusion algorithm and the superior performance of the proposed TLF3D tracker against state-of-the-art RGB-D trackers. key words: RGB-D tracking, data fusion, 3D object tracking, online video processing

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-Time Multi-scale Tracking via Online RGB-D Multiple Instance Learning

It is still a challenging problem to develop robust target tracking algorithm under various environments. Most of current target tracking algorithms are able to track objects well in controlled environments, but they usually fail in significant variation of the target’s scale, pose and plane rotation. One reason for such failure is that these object tracking algorithms employ fixed-size trackin...

متن کامل

Multiple Objects Fusion Tracker Using a Matching Network for Adaptively Represented Instance Pairs

Multiple-object tracking is affected by various sources of distortion, such as occlusion, illumination variations and motion changes. Overcoming these distortions by tracking on RGB frames, such as shifting, has limitations because of material distortions caused by RGB frames. To overcome these distortions, we propose a multiple-object fusion tracker (MOFT), which uses a combination of 3D point...

متن کامل

Live RGB-D camera tracking for television production studios

In this work, a real-time image-based camera tracker is designed for live television production studios. The major concern is to decrease camera tracking expenses by an affordable vision-based approach. First, a dense keyframe model of the static studio scene is generated using image-based dense tracking and bundle adjustment. Online camera tracking is then defined as registration problem betwe...

متن کامل

Robust Performance-driven 3D Face Tracking in Long Range Depth Scenes

We introduce a novel robust hybrid 3D face tracking framework from RGBD video streams, which is capable of tracking head pose and facial actions without precalibration or intervention from a user. In particular, we emphasize on improving the tracking performance in instances where the tracked subject is at a large distance from the cameras, and the quality of point cloud deteriorates severely. ...

متن کامل

Spatial Pyramid Context-Aware Moving Object Detection and Tracking for Full Motion Video and Wide Aerial Motion Imagery

A robust and fast automatic moving object detection and tracking system is essential to characterize target object and extract spatial and temporal information for different functionalities including video surveillance systems, urban traffic monitoring and navigation, robotic, medical imaging, etc. A reliable detecting and tracking system is required to generalize across huge variations in obje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEICE Transactions

دوره 100-D  شماره 

صفحات  -

تاریخ انتشار 2017